Uracil in DNA and its processing by different DNA glycosylases.
نویسندگان
چکیده
Uracil in DNA may result from incorporation of dUMP during replication and from spontaneous or enzymatic deamination of cytosine, resulting in U:A pairs or U:G mismatches, respectively. Uracil generated by activation-induced cytosine deaminase (AID) in B cells is a normal intermediate in adaptive immunity. Five mammalian uracil-DNA glycosylases have been identified; these are mitochondrial UNG1 and nuclear UNG2, both encoded by the UNG gene, and the nuclear proteins SMUG1, TDG and MBD4. Nuclear UNG2 is apparently the sole contributor to the post-replicative repair of U:A lesions and to the removal of uracil from U:G contexts in immunoglobulin genes as part of somatic hypermutation and class-switch recombination processes in adaptive immunity. All uracil-DNA glycosylases apparently contribute to U:G repair in other cells, but they are likely to have different relative significance in proliferating and non-proliferating cells, and in different phases of the cell cycle. There are also some indications that there may be species differences in the function of the uracil-DNA glycosylases.
منابع مشابه
Excision of uracil residues in DNA: mechanism of action of Escherichia coli and Micrococcus luteus uracil-DNA glycosylases.
Various octadeoxynucleotides containing uracil at different positions were synthesized and submitted to the action of Escherichia coli and Micrococcus luteus uracil-DNA glycosylases. A uracil residue situated at the 5'-end was excised by the M.luteus enzyme but not by the E.coli one. Uracil residues located at the ultimate and penultimate positions at the 3'-end were not cleaved by either enzym...
متن کاملDNA glycosylases in the base excision repair of DNA.
A wide range of cytotoxic and mutagenic DNA bases are removed by different DNA glycosylases, which initiate the base excision repair pathway. DNA glycosylases cleave the N-glycosylic bond between the target base and deoxyribose, thus releasing a free base and leaving an apurinic/apyrimidinic (AP) site. In addition, several DNA glycosylases are bifunctional, since they also display a lyase activ...
متن کاملHelix–hairpin–helix protein MJ1434 from Methanocaldococcus jannaschii and EndoIV homologue TTC0482 from Thermus thermophilus HB27 do not process DNA uracil residues
The mutagenic threat of hydrolytic DNA cytosine deamination is met mostly by uracil DNA glycosylases (UDG) initiating base excision repair. However, several sequenced genomes of archaeal organisms are devoid of genes coding for homologues of the otherwise ubiquitous UDG superfamily of proteins. Previously, two possible solutions to this problem were offered by (i) a report of a newly discovered...
متن کاملMechanisms of base selection by human single-stranded selective monofunctional uracil-DNA glycosylase.
hSMUG1 (human single-stranded selective monofunctional uracil-DNA glyscosylase) is one of three glycosylases encoded within a small region of human chromosome 12. Those three glycosylases, UNG (uracil-DNA glycosylase), TDG (thymine-DNA glyscosylase), and hSMUG1, have in common the capacity to remove uracil from DNA. However, these glycosylases also repair other lesions and have distinct substra...
متن کاملIdentification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors
BACKGROUND The cellular environment exposes DNA to a wide variety of endogenous and exogenous reactive species that can damage DNA, thereby leading to genetic mutations. DNA glycosylases protect the integrity of the genome by catalyzing the first step in the base excision-repair of lesions in DNA. RESULTS Here, we report a strategy to conduct genome-wide screening for expressed DNA glycosylas...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 364 1517 شماره
صفحات -
تاریخ انتشار 2009